Robust Final-Round Cache-Trace Attacks Against AES
نویسنده
چکیده
This paper describes an algorithm to attack AES using sidechannel information from the final round cache lookups performed by the encryption, specifically whether each access hits or misses in the cache, building off of previous work by Acıiçmez and Koç [AK06]. It is assumed that an attacker could gain such a trace through power consumption analysis or electromagnetic analysis. This information has already been shown to lead to an effective attack. This paper interprets cache trace data available as binary constraints on pairs of key bytes then reduces key search to a constraint-satisfaction problem. In this way, an attacker is guaranteed to perform as little search as is possible given a set of cache traces, leading to a natural tradeoff between online collection and offline processing. This paper also differs from previous work in assuming a partially pre-loaded cache, proving that cache trace attacks are still effective in this scenario with the number of samples required being inversely related to the percentage of cache which is pre-loaded.
منابع مشابه
A comprehensive study of multiple deductions-based algebraic trace driven cache attacks on AES
Existing trace driven cache attacks (TDCAs) can only analyze the cache events in the first two rounds or the last round of AES, which limits the efficiency of the attacks. Recently, Zhao et al. proposed the multiple deductions-based algebraic side-channel attack (MDASCA) to cope with the errors in leakage measurements and to exploit new leakage models. Their preliminary results showed that MDAS...
متن کاملOn the complexity of side-channel attacks on AES-256 - methodology and quantitative results on cache attacks
Larger key lengths translate into an exponential increase in the complexity of an exhaustive search. Side-channel attacks, however, use a divide-and-conquer approach and hence it is generally assumed that increasing the key length cannot be used as mitigation. Yet, the internal round structure of AES-256 and its key-scheduling seem to hinder a direct extension of the existing attacks on AES-128...
متن کاملEnhanced Flush+Reload Attack on AES
In cloud computing, multiple users can share the same physical machine that can potentially leak secret information, in particular when the memory de-duplication is enabled. Flush+Reload attack is a cache-based attack that makes use of resource sharing. T-table implementation of AES is commonly used in the crypto libraries like OpenSSL. Several Flush+Reload attacks on T-table implementat...
متن کاملTrace-Driven Cache Attacks on AES
Cache based side-channel attacks have recently been attracted significant attention due to the new developments in the field. In this paper, we present efficient trace-driven cache attacks on a widely used implementation of the AES cryptosystem. We also evaluate the cost of the proposed attacks in detail under the assumption of a noiseless environment. We develop an accurate mathematical model ...
متن کاملImproved Cache Trace Attack on AES and CLEFIA by Considering Cache Miss and S-box Misalignment
This paper presents an improved Cache trace attack on AES and CLEFIA by considering Cache miss trace information and S-box misalignment. In 2006, O. Acıiçmez et al. present a trace driven Cache attack on AES first two rounds, and point out that if the Cache element number of the Cache block is 16, at most 48-bit of AES key can be obtained in the first round attack. Their attack is based on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006